最接近的基于邻居的方法通常用于分类任务和其他数据分析方法的子例程。具有将自己的数据点插入训练集的攻击者可以操纵推断的最近的邻居结构。我们将此目标提取到对$ k $ neart的邻居分类($ k $ nn)执行训练集数据插入攻击的任务。我们证明,即使$ k = 1 $,计算对$ k $ nn分类的最佳训练时间(又称中毒)攻击也是NP-HARD,并且攻击者只能插入一个数据点。我们提供任何时间算法来执行此类攻击,以及一般$ K $和攻击者预算的贪婪算法。我们提供理论界限,并从经验上证明我们方法对合成和现实数据集的有效性和实用性。从经验上讲,我们发现$ k $ nn在实践中很容易受到伤害,而降低维度是有效的防御。最后,我们讨论了我们的分析阐明的开放问题。
translated by 谷歌翻译
错误 - 背面范围(BackProp)算法仍然是人工神经网络中信用分配问题的最常见解决方案。在神经科学中,尚不清楚大脑是否可以采用类似的策略来纠正其突触。最近的模型试图弥合这一差距,同时与一系列实验观察一致。但是,这些模型要么无法有效地跨多层返回误差信号,要么需要多相学习过程,它们都不让人想起大脑中的学习。在这里,我们介绍了一种新模型,破裂的皮质皮质网络(BUSTCCN),该网络通过整合了皮质网络的已知特性,即爆发活动,短期可塑性(STP)和dendrite-target-targeting Interneurons来解决这些问题。 BUSTCCN依赖于连接型特异性STP的突发多路复用来传播深层皮质网络中的反向Prop样误差信号。这些误差信号是在远端树突上编码的,由于兴奋性抑制性抑制性倒入输入而诱导爆发依赖性可塑性。首先,我们证明我们的模型可以使用单相学习过程有效地通过多层回溯错误。接下来,我们通过经验和分析表明,在我们的模型中学习近似反向推广的梯度。最后,我们证明我们的模型能够学习复杂的图像分类任务(MNIST和CIFAR-10)。总体而言,我们的结果表明,跨细胞,细胞,微电路和系统水平的皮质特征共同基于大脑中的单相有效深度学习。
translated by 谷歌翻译
我们介绍了一种改进政策改进的方法,该方法在基于价值的强化学习(RL)的贪婪方法与基于模型的RL的典型计划方法之间进行了插值。新方法建立在几何视野模型(GHM,也称为伽马模型)的概念上,该模型对给定策略的折现状态验证分布进行了建模。我们表明,我们可以通过仔细的基本策略GHM的仔细组成,而无需任何其他学习,可以评估任何非马尔科夫策略,以固定的概率在一组基本马尔可夫策略之间切换。然后,我们可以将广义政策改进(GPI)应用于此类非马尔科夫政策的收集,以获得新的马尔可夫政策,通常将其表现优于其先驱。我们对这种方法提供了彻底的理论分析,开发了转移和标准RL的应用,并在经验上证明了其对标准GPI的有效性,对充满挑战的深度RL连续控制任务。我们还提供了GHM培训方法的分析,证明了关于先前提出的方法的新型收敛结果,并显示了如何在深度RL设置中稳定训练这些模型。
translated by 谷歌翻译
A Digital Twin (DT) is a simulation of a physical system that provides information to make decisions that add economic, social or commercial value. The behaviour of a physical system changes over time, a DT must therefore be continually updated with data from the physical systems to reflect its changing behaviour. For resource-constrained systems, updating a DT is non-trivial because of challenges such as on-board learning and the off-board data transfer. This paper presents a framework for updating data-driven DTs of resource-constrained systems geared towards system health monitoring. The proposed solution consists of: (1) an on-board system running a light-weight DT allowing the prioritisation and parsimonious transfer of data generated by the physical system; and (2) off-board robust updating of the DT and detection of anomalous behaviours. Two case studies are considered using a production gas turbine engine system to demonstrate the digital representation accuracy for real-world, time-varying physical systems.
translated by 谷歌翻译
Rankings are widely collected in various real-life scenarios, leading to the leakage of personal information such as users' preferences on videos or news. To protect rankings, existing works mainly develop privacy protection on a single ranking within a set of ranking or pairwise comparisons of a ranking under the $\epsilon$-differential privacy. This paper proposes a novel notion called $\epsilon$-ranking differential privacy for protecting ranks. We establish the connection between the Mallows model (Mallows, 1957) and the proposed $\epsilon$-ranking differential privacy. This allows us to develop a multistage ranking algorithm to generate synthetic rankings while satisfying the developed $\epsilon$-ranking differential privacy. Theoretical results regarding the utility of synthetic rankings in the downstream tasks, including the inference attack and the personalized ranking tasks, are established. For the inference attack, we quantify how $\epsilon$ affects the estimation of the true ranking based on synthetic rankings. For the personalized ranking task, we consider varying privacy preferences among users and quantify how their privacy preferences affect the consistency in estimating the optimal ranking function. Extensive numerical experiments are carried out to verify the theoretical results and demonstrate the effectiveness of the proposed synthetic ranking algorithm.
translated by 谷歌翻译
Contextual bandit has been widely used for sequential decision-making based on the current contextual information and historical feedback data. In modern applications, such context format can be rich and can often be formulated as a matrix. Moreover, while existing bandit algorithms mainly focused on reward-maximization, less attention has been paid to the statistical inference. To fill in these gaps, in this work we consider a matrix contextual bandit framework where the true model parameter is a low-rank matrix, and propose a fully online procedure to simultaneously make sequential decision-making and conduct statistical inference. The low-rank structure of the model parameter and the adaptivity nature of the data collection process makes this difficult: standard low-rank estimators are not fully online and are biased, while existing inference approaches in bandit algorithms fail to account for the low-rankness and are also biased. To address these, we introduce a new online doubly-debiasing inference procedure to simultaneously handle both sources of bias. In theory, we establish the asymptotic normality of the proposed online doubly-debiased estimator and prove the validity of the constructed confidence interval. Our inference results are built upon a newly developed low-rank stochastic gradient descent estimator and its non-asymptotic convergence result, which is also of independent interest.
translated by 谷歌翻译
The reward hypothesis posits that, "all of what we mean by goals and purposes can be well thought of as maximization of the expected value of the cumulative sum of a received scalar signal (reward)." We aim to fully settle this hypothesis. This will not conclude with a simple affirmation or refutation, but rather specify completely the implicit requirements on goals and purposes under which the hypothesis holds.
translated by 谷歌翻译
The coverage of different stakeholders mentioned in the news articles significantly impacts the slant or polarity detection of the concerned news publishers. For instance, the pro-government media outlets would give more coverage to the government stakeholders to increase their accessibility to the news audiences. In contrast, the anti-government news agencies would focus more on the views of the opponent stakeholders to inform the readers about the shortcomings of government policies. In this paper, we address the problem of stakeholder extraction from news articles and thereby determine the inherent bias present in news reporting. Identifying potential stakeholders in multi-topic news scenarios is challenging because each news topic has different stakeholders. The research presented in this paper utilizes both contextual information and external knowledge to identify the topic-specific stakeholders from news articles. We also apply a sequential incremental clustering algorithm to group the entities with similar stakeholder types. We carried out all our experiments on news articles on four Indian government policies published by numerous national and international news agencies. We also further generalize our system, and the experimental results show that the proposed model can be extended to other news topics.
translated by 谷歌翻译
The primary aim of this research was to find a model that best predicts which fallen angel bonds would either potentially rise up back to investment grade bonds and which ones would fall into bankruptcy. To implement the solution, we thought that the ideal method would be to create an optimal machine learning model that could predict bankruptcies. Among the many machine learning models out there we decided to pick four classification methods: logistic regression, KNN, SVM, and NN. We also utilized an automated methods of Google Cloud's machine learning. The results of our model comparisons showed that the models did not predict bankruptcies very well on the original data set with the exception of Google Cloud's machine learning having a high precision score. However, our over-sampled and feature selection data set did perform very well. This could likely be due to the model being over-fitted to match the narrative of the over-sampled data (as in, it does not accurately predict data outside of this data set quite well). Therefore, we were not able to create a model that we are confident that would predict bankruptcies. However, we were able to find value out of this project in two key ways. The first is that Google Cloud's machine learning model in every metric and in every data set either outperformed or performed on par with the other models. The second is that we found that utilizing feature selection did not reduce predictive power that much. This means that we can reduce the amount of data to collect for future experimentation regarding predicting bankruptcies.
translated by 谷歌翻译
We study the learning dynamics of self-predictive learning for reinforcement learning, a family of algorithms that learn representations by minimizing the prediction error of their own future latent representations. Despite its recent empirical success, such algorithms have an apparent defect: trivial representations (such as constants) minimize the prediction error, yet it is obviously undesirable to converge to such solutions. Our central insight is that careful designs of the optimization dynamics are critical to learning meaningful representations. We identify that a faster paced optimization of the predictor and semi-gradient updates on the representation, are crucial to preventing the representation collapse. Then in an idealized setup, we show self-predictive learning dynamics carries out spectral decomposition on the state transition matrix, effectively capturing information of the transition dynamics. Building on the theoretical insights, we propose bidirectional self-predictive learning, a novel self-predictive algorithm that learns two representations simultaneously. We examine the robustness of our theoretical insights with a number of small-scale experiments and showcase the promise of the novel representation learning algorithm with large-scale experiments.
translated by 谷歌翻译